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A NEW CLASS OF EXACT SO~~JIO~S WITH SHOCK WAVES IN GAS DYNAMICS * 

S.A. POSLAVSKII 

New exact solutions of the equation of one-dimensional gas dynamics with 
strong shock waves propagating in a moving medium are obtained. The gas 
flow behind a discontinuity is described by a solution with uniform 
deformation (see /S, 2,'). Solutions of the explosion problem without a 
counterpressure in a unifarmly expanding (or compressing! gas with an 
arbitrary adiabatic exponent and a non-uniform initial density distribution 
are constructed, as well as of the problem cf cavity collapse in a dust 
cloud with the formation of a shock wave. 

The solution (see /l, 2,') was joined with the shock and detonation 
waves propagating in a quiescent gas in /3 - 6/, The problem of joining, 
by the use of the shock wave, of a solution for a moving selfgravitating 
medium with zero pressure, and the problem of selfsimilar solutions were 
discussed in /7/. An exact solution of the problem of a strong explosion 
in a uniformly expanding (or compressing) gas with a special adiabatic 
exponent equal to 5/3 was obtained in /8/. 

1, The exact particular solution of a system of equations, which describes the one- 
dimensional adiabatic motion of an ideal gas, found by L.I. Sedov, /l, 2/, can be represented 
by the formulae 

r = jri‘ (i) i, do -_ i [2~h_'(R-" + A)l'.d/, i. = \' ('i - 1) (f.fj 

(the dot denotes a derivative with respect to time t). 
Here r and 5 aretheEulerandLagrangecoordinates,Lt is thevelocity, pisthepressure, pis 

thedensity, y denotestheadiabaticexponent (v> 11, v = i, 2, 3formotionswithplane, cylindrical 
andsphericalwavesrespectively,,A, e, &,. po(Ea) arearbitraryconstants,and &,> 0, po(&)> 0, 

G (5) is an arbitrary function. By correctly selecting the Lagrangian coordinates we can 
have e= Cl. 

Let us consider the problem of joining the solution of (l.l), (1.2) with a shock wave 
which propagates in a gas with zero pressure (in a dust medium). We write the conditions at 
the discontinuity denoting the quantities in front of the shock wave by the index1,taking into 
account'that p1 = 0 and using relations (1.1) and (1.2): 

(6, = r,lR is a Lagrange coordinate of gas particles which occux at the shock wave front, and 

r* is the shock wave radius). 
The motion of the dust medium before a discontinuity is determined by the relation 
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where j(v) and lz (v) are arbitrary functions (generally speaking non-unique, and not determined 

along the whole of the u axis). 
Let a shock wave emerge from the centre of symmetry (axis or plane) at the time t'. The 

following two formulations of the problem of joining the solutions (l.l), (1.2) with (l-5), 
using a jump, are possible. 

Problem A. If the density and pressure distributions behind the shock wave are given, 
that is the function G(E) is known, the integration of the first Eq.11.4) gives us the law of 
motion of the shock wave e,(t) 

(1.6) 

(the function R (t) is determined from (1.1)). Subsequently, solving the second Eq.(1.4) fox 
v1 , we obtain the dust velocity vr(t) at the shock wave front at the instant t. After 
inverting this function from the first Eq.(l.S) we have 

Then the function h(c) is determined from Eq.(1.3) and the second Eq.(l.51. 
We note that a similar approach was proposed in /7/. 

Problem B. Let the function j(v) be known, that is the velocity distribution in the dust 
medium is specified. On solving the relation RE, = qt i_ f (v,)for Q, and substituting the 
expression found into (1.4), we obtain an ordinary first-order differential equation for i*(t). 
Generally, this equation cannot be integrated by quadratures. However, sometimes integration 
can be performed here for a specially selected f CL.). 

2. We select the function j(v) in the form j(v) = r,, - vt,. Obviously, we can assume 
without loss of generality that t, = 0, r0 = 0 . Then from the first equation of (1.5) we 
obtain 

v = r:t (2.1) 
Such a velocity distribution for 1< 0 corresponds to a uniform compression of the 

medium, and for t>O to its uniform scattering. At the instant t = 0, the whole substance 
concentrates at the origin of coordinates (r = 0). 

At the front of a shock wave we have r1 = Rt-'&,u, = R'g,. Since it is necessary that 

vi > tfl 11 the inequality 
R'> R:t (2.2) 

should hold after formation of a discontinuity for t> t'. 
Allowing for (2.1) and (2.2), we transform relation (1.4) to the form 

G=“-‘RhE2 y-- -* (R*-$)‘. -$In+~(R’-+) (2.3) 

This equation is easy to integrate 

E, = k 1 R/t p-l).‘? ) 

The inequality I, (t') = 0 holds if R(t')= 0. 
in the solutions described the gas pressure behind 
approaches the centre of symmetry. 

First, let us consider the case when t'>O. 
in (1.11, in order to satisfy condition (2.2). 

We introduce the new variables Q and t: 

k = const (2.4) 

which is possible only when E =+i. Thus, 
the shock wave always decreases as one 

We note that it is necessary to have A>0 

Q = d’:kR. T = l/~d’iWAt 
(2.5) 

Then, for 7> 6, where z' is a dimensionless instant of time of the appearance of the 
discontinuity, relations (1.1) and (1.21 can be written as 

dR = (W -+ l)'WT, z> Q (n-h + l)-'1: (2.6) 

Let us estimate asQ+ mthe value cf the quantities on both sides of the above inequality 
assuming that ?,f 1. Since C?(6) = 0, 



580 

We may now note that if O< ht 1, then the inequality in (2.6) does not hold for 
sufficiently large values of Q. It can be shown that for h = 1 the inequality is violated. 
In the solutions discussed, thexefore, certainly h> ~(v>(Y $- 1)/v). For values of y that 
satisfy this requirement, the gxaph of the function D(Z) has the asymptote 52 = r - zc so that 

lim ~(r-r,)-Q(r)]=0 
'f- [ 

Obviously, to satisfy the inequality in (2.6) for any 'r> 'c' it is necessary that 

It follows that T' should not be less than the integral in the last equality. Henceforth, 
we limit ourselves to considexing the case of the strict inequality T'> I. 

3y (2.4) and fl,l), &+ can increase to a certain final value which we denote by &max. 
Thus, we have here the effect of 'freezing' of the shock wave in the dispersing medium. Only 
those warticles whose distance from the centre of symmetry at the instant t' does not exceed 
rm,, = @ah-~A)'I&,,,,t' pass through a discontinuity. The sphere which contains these particles 
may be a surface of a contact discontinuity (for example, a boundary with a vacuum). 

Henceforth, we shall denote the value of Q which corresponds to the Lagrangian coordinate 
of the shock wave g, by 51,. Then relation (2.4) can be written in the form 

E, = [Q*lr (Q*)l(v-l)‘z (8, = f*/Emar) (2.7) 

The pressure and density distributions in the gas behind the shock wave are determined 
fromtheexpressions 

Ps(S*)= *=-exp J 2na+i,ig~*;;*$&-, @,] (2.8) 
r 

p(E*, T)=c Pv-') ~a(~*)/~~(~), 7>7@*), pa(Emar)=const 

(2.91 

p (E+, 7) = Al,‘+*) po (I*);@ (t), 7 > 7&) 

We will show that the shock wave originates at the centre of symmetry as a consequence 
the emission of some positive energy E, at the instant T'. To do this we consider the 
asymptotic behaviour of the solution as z+z' (E,+ 0). From formulae (2.7)-(2.9) we have 
(to within small quantities of higher order) 

where the constants e, and cq are determined uniquely by v, y and r'. 
The total energy of the gas behind the shock wave is 

The same mass of gas had the following energy before passing through the shock wave: 

The quantity E, = El - Eldoes not dependonthe upper limit of integration 5,. Using 

(2.10) we finally obtain 
ccp, 

Eo=;fh(Eo-Ex)=~ >O (2.21) 

The density distributioninthe dust medium for r = Z ‘ is represented by the parametric 

relation with parameter E*. 

For small r we have the asymptotic form 



p(r, r')=k@[l+o(l)], fJ= Y(V-_:i;~-2) 

where kI is expressed by the constants introduced above. The value 

for v = 3 and r> 7. 

As r+rmaX. the initial density p(r,r') increases to infinity 
to zero if y > (v i 2)/v. 
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(2.13) 

Of p (0, T’) is finite only 

ify< (v + z)/v,anddecreases 

As we can see from(2.10), in the case of motions with plane waves (v = I), the density 
has a non-integrable Singularity. After the explosion the gas pressure at the centre of 

symmetry vanishes for any value of v. In one special case the solution of our problem is 
described by simple formulae. Let y = (v + 2)/v, r' = 2. Then 

n = [(T - 1)’ -- ill!‘, 
3*_(T;2)l/(iW 

(2.14) 

r* = &,,axA-““tn (T -- 2)” 

p&J = Btv, p&) = vBE\-?, B = const 

v-1 b=+, 
V - 2 - 132 

U=T' 0= 
v+1 

Let us now take t'<O. In this case the sign of the constant A in (1.1) can be arbitrary. 
If A>O, we again introduce the variables R and r given by formulae (2.5). On replacing 

iar and P,,(&,,,~~) and the lower integration limit in (2.8) by &,po(&) and Q, respectively, 
in (2.8) and(2.9) where Q, = '&' (T’/2), & = %, (a,), po (&) = Const > 0, we arrive at the expressions 
for the pressure and density distributioninthe gas behind the shock wave. The law of motion 
of the discontinuity takes the form 

8, = [ 211:jy;>*) ] ww? (2.15) 

The asymptotic formulae (2.10) and the eXpreSSiOnS for the explosion energy (2.11) remain 

valid, taking the above replacements into account. Using (2.15) we can show that the shock 
wave goes to infinity in a finite time interval (r', 0) - The density distribution in the 
dust medium at the instant of explosion is determined as before by formulae (2.12), with 

&oar = =.. 
Now let A<O. We introduce the variables Q and r by formulae (2.51, replacing A by 

-A. Instead of (2.6) we shall have d& = f (QeA - l)“*d~. In the time interval r of length 

A ~2 5 (Q-j. - i)-'" dQ 
0 

the quantity R increases from 0 to 1 and again becomes 0. Here n' varies from +oo to -m. 
Consequently, the constraintr'>- Ashould be imposed on the instant of the explosion. The 
case of satisfying the strict inequality does not qualitatively differ from the case A>0 
above. If, however,? = -A, as T-O the behavour of the solution changes. Thus, for the 
radius of the shock wave we can obtain the estimate 

r*-Ta, CC= 
4-v((y--I)3 

2[2+v(Y--)l 

It follows that as r-0, the shock wave goes to infinity if y>l + 2v-'l*, and returns 
to the centre of symmetry if y< 1 + 20:. 

When y = (v + 2)/v: z’ = -A = -2 the solution has a simple form, and is obtained from 
(2.14) by replacing A,r,Smar by (- A),(-?),%, respectively, and arranging, where necessary, 
modular parentheses. 

Notice that this solution and solution (2.14) (see /2/j could be obtained from the solution 
of the problem of an explosion in a medium of varying density p = c,r“', where C, is a constant, 
and w = (v - 2 - v*)/(v + 1), using a special group of the invariant transformations ofthe equations 
of gas dynamics, which corresponds to y = (v + 2)/v (see /8, 9/). 

3. Consider the example of Problem A from Section 1. Let y=(v;2)/v,e=-1,G(5)rc*= 

const, c > 0. Such a choice corresponds to the Gaussian density and pressure distributions in 
the gas behind the shock wave, 

PO (0 =ClexP i-&)9 Po(f)=C'C,exP(-&) 

We introduce new variables, R =(- A)""R,T= __~l. On integrating (1.1) we obtain therelation 

n (7) = [(r - To)2 + ij'/r, 5, = const 

Without loss of genrality we assume below that '10= 0. 
From Eq.cl.6) we determine the law of motion for the shock wave, 
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5+ = c-v-“% (arctgT - arctgT'1. r* - (- ._1,_'!> (T?+. j)'? 5, <j'.l 

where T$ is the instant of the shock wave emerging from the centre of symmetry. 

It can be shown that lim r_r.Ez= 0 (Et is the total energy of the gas behind the shock wave). 
In the solution discussed, therefore, the formation of a discontinuity is not connected with 
the emission of energy at the instant r'. 

From (1.4) and (3.1) we find 

Assuming in this equality that 7 = T', we obtain that L.,(T')(u. that is the shock wave 
emerges as a consequence of the collision between the dust particles at the instant T'. 

We shall require that after the formation of a discontinuity in the dust medium nocaustics, 

i.e. surfaces of infinite density, appear. This requirement means thatinthe interval (T'. m) 
there should be a strictly increasing function g(~)=: ~*(TI- ~~(7) (T --7,)/A. It can be showr. 
using relations (3.1) and (3.2) that for this it is necessary and sufficient to satisfy tte 

inequality T' > T,, ‘, where T,,,' is the root of the equation (v- 1)~= n/2 -aarctgr. 

The solution for the dust is presentedinrthe parametric form 

r CT*. 7) = it IT*/ ;- i‘l (T,, IT* - TI .I_‘. T < T* 

r* CT,) = I-- .li 1 !!,i*. !! _ J! ,T*,. i, = 5, CT*) 

The shock wave 'freezes' on the dust particles which at the instant 1' were at a distance 

r 1,1,1X : C’ (-1.31,’ IT’ 1.7 2 -~~ ‘ii-ilg T’, \I 

from the centre of symmetry. 
The solution obtained describes the collapse of cavities in the dust cloud during the 

formation of the shock wave. 

The author expresses his gratitude to I.S. Shikin for useful observations and advice. 
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